Privacy-preserving Data Analysis through Representation Learning and Transformation

11/16/2020
by   Omid Hajihassani, et al.
0

The abundance of data from the sensors embedded in mobile and Internet of Things (IoT) devices and the remarkable success of deep neural networks in uncovering hidden patterns in time series data have led to mounting privacy concerns in recent years. In this paper, we aim to navigate the trade-off between data utility and privacy by learning low-dimensional representations that are useful for data anonymization. We propose probabilistic transformations in the latent space of a variational autoencoder to synthesize time series data such that intrusive inferences are prevented while desired inferences can still be made with a satisfactory level of accuracy. We compare our technique with state-of-the-art autoencoder-based anonymization techniques and additionally show that it can anonymize data in real time on resource-constrained edge devices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset