Progressive Channel-Shrinking Network

04/01/2023
by   Jianhong Pan, et al.
0

Currently, salience-based channel pruning makes continuous breakthroughs in network compression. In the realization, the salience mechanism is used as a metric of channel salience to guide pruning. Therefore, salience-based channel pruning can dynamically adjust the channel width at run-time, which provides a flexible pruning scheme. However, there are two problems emerging: a gating function is often needed to truncate the specific salience entries to zero, which destabilizes the forward propagation; dynamic architecture brings more cost for indexing in inference which bottlenecks the inference speed. In this paper, we propose a Progressive Channel-Shrinking (PCS) method to compress the selected salience entries at run-time instead of roughly approximating them to zero. We also propose a Running Shrinking Policy to provide a testing-static pruning scheme that can reduce the memory access cost for filter indexing. We evaluate our method on ImageNet and CIFAR10 datasets over two prevalent networks: ResNet and VGG, and demonstrate that our PCS outperforms all baselines and achieves state-of-the-art in terms of compression-performance tradeoff. Moreover, we observe a significant and practical acceleration of inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro