Propagating uncertainty in a network of energy models

01/24/2022
by   Victoria Volodina, et al.
0

Computational models are widely used in decision support for energy system operation, planning and policy. A system of models is often employed, where model inputs themselves arise from other computer models, with each model being developed by different teams of experts. Gaussian Process emulators can be used to approximate the behaviour of complex, computationally intensive models; this type of emulator both provides the predictions and quantifies uncertainty about the predicted model output. This paper presents a computationally efficient framework for propagating uncertainty within a network of models with high-dimensional outputs used for energy planning. We present a case study from a UK county council, that is interested in considering low carbon technology options to transform its infrastructure. The system model employed for this case study is simple, however, the framework can be applied to larger networks of more complex models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset