PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation

03/24/2021
by   Yihua Cheng, et al.
0

Gaze estimation methods learn eye gaze from facial features. However, among rich information in the facial image, real gaze-relevant features only correspond to subtle changes in eye region, while other gaze-irrelevant features like illumination, personal appearance and even facial expression may affect the learning in an unexpected way. This is a major reason why existing methods show significant performance degradation in cross-domain/dataset evaluation. In this paper, we tackle the domain generalization problem in cross-domain gaze estimation for unknown target domains. To be specific, we realize the domain generalization by gaze feature purification. We eliminate gaze-irrelevant factors such as illumination and identity to improve the cross-dataset performance without knowing the target dataset. We design a plug-and-play self-adversarial framework for the gaze feature purification. The framework enhances not only our baseline but also existing gaze estimation methods directly and significantly. Our method achieves the state-of-the-art performance in different benchmarks. Meanwhile, the purification is easily explainable via visualization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro