PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images

07/13/2022
by   Hongwen Zhang, et al.
0

We present PyMAF-X, a regression-based approach to recovering a full-body parametric model from a single image. This task is very challenging since minor parametric deviation may lead to noticeable misalignment between the estimated mesh and the input image. Moreover, when integrating part-specific estimations to the full-body model, existing solutions tend to either degrade the alignment or produce unnatural wrist poses. To address these issues, we propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop in our regression network for well-aligned human mesh recovery and extend it as PyMAF-X for the recovery of expressive full-body models. The core idea of PyMAF is to leverage a feature pyramid and rectify the predicted parameters explicitly based on the mesh-image alignment status. Specifically, given the currently predicted parameters, mesh-aligned evidence will be extracted from finer-resolution features accordingly and fed back for parameter rectification. To enhance the alignment perception, an auxiliary dense supervision is employed to provide mesh-image correspondence guidance while spatial alignment attention is introduced to enable the awareness of the global contexts for our network. When extending PyMAF for full-body mesh recovery, an adaptive integration strategy is proposed in PyMAF-X to produce natural wrist poses while maintaining the well-aligned performance of the part-specific estimations. The efficacy of our approach is validated on several benchmark datasets for body-only and full-body mesh recovery, where PyMAF and PyMAF-X effectively improve the mesh-image alignment and achieve new state-of-the-art results. The project page with code and video results can be found at https://www.liuyebin.com/pymaf-x.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset