Quantifying Assurance in Learning-enabled Systems

06/18/2020
by   Erfan Asaadi, et al.
0

Dependability assurance of systems embedding machine learning(ML) components—so called learning-enabled systems (LESs)—is a key step for their use in safety-critical applications. In emerging standardization and guidance efforts, there is a growing consensus in the value of using assurance cases for that purpose. This paper develops a quantitative notion of assurance that an LES is dependable, as a core component of its assurance case, also extending our prior work that applied to ML components. Specifically, we characterize LES assurance in the form of assurance measures: a probabilistic quantification of confidence that an LES possesses system-level properties associated with functional capabilities and dependability attributes. We illustrate the utility of assurance measures by application to a real world autonomous aviation system, also describing their role both in i) guiding high-level, runtime risk mitigation decisions and ii) as a core component of the associated dynamic assurance case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro