Quantile regression: a penalization approach

11/04/2019
by   Álvaro Méndez Civieta, et al.
0

Sparse group LASSO (SGL) is a penalization technique used in regression problems where the covariates have a natural grouped structure and provides solutions that are both between and within group sparse. In this paper the SGL is introduced to the quantile regression (QR) framework, and a more flexible version, the adaptive sparse group LASSO (ASGL), is proposed. This proposal adds weights to the penalization improving prediction accuracy. Usually, adaptive weights are taken as a function of the original nonpenalized solution model. This approach is only feasible in the n > p framework. In this work, a solution that allows using adaptive weights in high-dimensional scenarios is proposed. The benefits of this proposal are studied both in synthetic and real datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset