Random Actions vs Random Policies: Bootstrapping Model-Based Direct Policy Search

10/21/2022
by   Elias Hanna, et al.
0

This paper studies the impact of the initial data gathering method on the subsequent learning of a dynamics model. Dynamics models approximate the true transition function of a given task, in order to perform policy search directly on the model rather than on the costly real system. This study aims to determine how to bootstrap a model as efficiently as possible, by comparing initialization methods employed in two different policy search frameworks in the literature. The study focuses on the model performance under the episode-based framework of Evolutionary methods using probabilistic ensembles. Experimental results show that various task-dependant factors can be detrimental to each method, suggesting to explore hybrid approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro