Random Feature Amplification: Feature Learning and Generalization in Neural Networks

02/15/2022
by   Spencer Frei, et al.
0

In this work, we provide a characterization of the feature-learning process in two-layer ReLU networks trained by gradient descent on the logistic loss following random initialization. We consider data with binary labels that are generated by an XOR-like function of the input features. We permit a constant fraction of the training labels to be corrupted by an adversary. We show that, although linear classifiers are no better than random guessing for the distribution we consider, two-layer ReLU networks trained by gradient descent achieve generalization error close to the label noise rate, refuting the conjecture of Malach and Shalev-Shwartz that 'deeper is better only when shallow is good'. We develop a novel proof technique that shows that at initialization, the vast majority of neurons function as random features that are only weakly correlated with useful features, and the gradient descent dynamics 'amplify' these weak, random features to strong, useful features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset