Re-determinizing Information Set Monte Carlo Tree Search in Hanabi

02/16/2019
by   James Goodman, et al.
0

This technical report documents the winner of the Computational Intelligence in Games(CIG) 2018 Hanabi competition. We introduce Re-determinizing IS-MCTS, a novel extension of Information Set Monte Carlo Tree Search (IS-MCTS) IS-MCTS that prevents a leakage of hidden information into opponent models that can occur in IS-MCTS, and is particularly severe in Hanabi. Re-determinizing IS-MCTS scores higher in Hanabi for 2-4 players than previously published work. Given the 40ms competition time limit per move we use a learned evaluation function to estimate leaf node values and avoid full simulations during MCTS. For the Mixed track competition, in which the identity of the other players is unknown, a simple Bayesian opponent model is used that is updated as each game proceeds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro