Real-time outlier detection for large datasets by RT-DetMCD

10/12/2019
by   Bart De Ketelaere, et al.
0

Modern industrial machines can generate gigabytes of data in seconds, frequently pushing the boundaries of available computing power. Together with the time criticality of industrial processing this presents a challenging problem for any data analytics procedure. We focus on the deterministic minimum covariance determinant method (DetMCD), which detects outliers by fitting a robust covariance matrix. We construct a much faster version of DetMCD by replacing its initial estimators by two new methods and incorporating update-based concentration steps. The computation time is reduced further by parallel computing, with a novel robust aggregation method to combine the results from the threads. The speed and accuracy of the proposed real-time DetMCD method (RT-DetMCD) are illustrated by simulation and a real industrial application to food sorting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro