Reconfiguring Graph Homomorphisms on the Sphere

10/02/2018
by   Jae-Baek Lee, et al.
0

Given a loop-free graph H, the reconfiguration problem for homomorphisms to H (also called H-colourings) asks: given two H-colourings f of g of a graph G, is it possible to transform f into g by a sequence of single-vertex colour changes such that every intermediate mapping is an H-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs (e.g. all C_4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever H is a K_2,3-free quadrangulation of the 2-sphere (equivalently, the plane) which is not a 4-cycle. If we instead consider graphs G and H with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for H-colourings is PSPACE-complete whenever H is a reflexive K_4-free triangulation of the 2-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which H-Recolouring is known to be PSPACE-complete for reflexive instances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro