Reconstruction of inhomogeneous media by iterative reconstruction algorithm with learned projector

07/26/2022
by   Kai Li, et al.
0

This paper is concerned with the inverse problem of scattering of time-harmonic acoustic waves from an inhomogeneous medium in two dimensions. We propose a deep learning-based iterative reconstruction algorithm for recovering the contrast of the inhomogeneous medium from the far-field data. The proposed algorithm is given by repeated applications of the Landweber method, the iteratively regularized Gauss-Newton method (IRGNM) and a deep neural network. The Landweber method is used to generate initial guesses for the exact contrast, and the IRGNM is employed to make further improvements to the estimated contrast. Our deep neural network (called the learned projector in this paper) mainly focuses on learning the a priori information of the shape of the unknown contrast by using a normalization technique in the training process and is trained to act like a projector which is expected to make the estimated contrast obtained by the Landweber method or the IRGNM closer to the exact contrast. It is believed that the application of the normalization technique can release the burden of training the deep neural network and lead to good performance of the proposed algorithm. Furthermore, the learned projector is expected to provide good initial guesses for IRGNM and be helpful for accelerating the proposed algorithm. Extensive numerical experiments show that our inversion algorithm has a satisfactory reconstruction capacity and good generalization ability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset