Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma Chemoradiotherapy using Planning CT-based Radiomics Model

09/05/2023
by   Shanshan Tang, et al.
0

Objectives: Approximately 30 (ASCC) patients will experience recurrence after chemoradiotherapy (CRT), and currently available clinical variables are poor predictors of treatment response. We aimed to develop a model leveraging information extracted from radiation pretreatment planning CT to predict recurrence-free survival (RFS) in ASCC patients after CRT. Methods: Radiomics features were extracted from planning CT images of 96 ASCC patients. Following pre-feature selection, the optimal feature set was selected via step-forward feature selection with a multivariate Cox proportional hazard model. The RFS prediction was generated from a radiomics-clinical combined model based on an optimal feature set with five repeats of five-fold cross validation. The risk stratification ability of the proposed model was evaluated with Kaplan-Meier analysis. Results: Shape- and texture-based radiomics features significantly predicted RFS. Compared to a clinical-only model, radiomics-clinical combined model achieves better performance in the testing cohort with higher C-index (0.80 vs 0.73) and AUC (0.84 vs 0.79 for 1-year RFS, 0.84 vs 0.78 for 2-year RFS, and 0.86 vs 0.83 for 3-year RFS), leading to distinctive high- and low-risk of recurrence groups (p<0.001). Conclusions: A treatment planning CT based radiomics and clinical combined model had improved prognostic performance in predicting RFS for ASCC patients treated with CRT as compared to a model using clinical features only.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro