Reducing Moser's Square Packing Problem to a Bounded Number of Squares

03/11/2021
by   Meike Neuwohner, et al.
0

The problem widely known as Moser's Square Packing Problem asks for the smallest area A such that for any set S of squares of total area 1, there exists a rectangle R of area A into which the squares in S permit an internally-disjoint, axis-parallel packing. It was formulated by Moser in 1966 and remains unsolved so far. The best known lower bound of 2+√(3)/3≤ A is due to Novotný and has been shown to be sufficient for up to 11 squares by Platz, while Hougardy and Ilhan have established that A < 1.37. In this paper, we reduce Moser's Square Packing Problem to a problem on a finite set of squares in the following sense: We show how to compute a natural number N such that it is enough to determine the value of A for sets containing at most N squares with total area 1.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro