Reference-based Texture transfer for Single Image Super-resolution of Magnetic Resonance images

02/10/2021
by   Madhu Mithra K K, et al.
0

Magnetic Resonance Imaging (MRI) is a valuable clinical diagnostic modality for spine pathologies with excellent characterization for infection, tumor, degenerations, fractures and herniations. However in surgery, image-guided spinal procedures continue to rely on CT and fluoroscopy, as MRI slice resolutions are typically insufficient. Building upon state-of-the-art single image super-resolution, we propose a reference-based, unpaired multi-contrast texture-transfer strategy for deep learning based in-plane and across-plane MRI super-resolution. We use the scattering transform to relate the texture features of image patches to unpaired reference image patches, and additionally a loss term for multi-contrast texture. We apply our scheme in different super-resolution architectures, observing improvement in PSNR and SSIM for 4x super-resolution in most of the cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro