Referring Camouflaged Object Detection

06/13/2023
by   Xuying Zhang, et al.
0

In this paper, we consider the problem of referring camouflaged object detection (Ref-COD), a new task that aims to segment specified camouflaged objects based on some form of reference, e.g., image, text. We first assemble a large-scale dataset, called R2C7K, which consists of 7K images covering 64 object categories in real-world scenarios. Then, we develop a simple but strong dual-branch framework, dubbed R2CNet, with a reference branch learning common representations from the referring information and a segmentation branch identifying and segmenting camouflaged objects under the guidance of the common representations. In particular, we design a Referring Mask Generation module to generate pixel-level prior mask and a Referring Feature Enrichment module to enhance the capability of identifying camouflaged objects. Extensive experiments show the superiority of our Ref-COD methods over their COD counterparts in segmenting specified camouflaged objects and identifying the main body of target objects. Our code and dataset are publicly available at https://github.com/zhangxuying1004/RefCOD.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset