Regularity theory and numerical algorithm for the fractional Klein-Kramers equation

12/10/2021
by   Jing Sun, et al.
0

Fractional Klein-Kramers equation can well describe subdiffusion in phase space. In this paper, we develop the fully discrete scheme for fractional Klein-Kramers equation based on the backward Euler convolution quadrature and local discontinuous Galerkin methods. Thanks to the obtained sharp regularity estimates in temporal and spatial directions after overcoming the hypocoercivity of the operator, the complete error analyses of the fully discrete scheme are built. hypocoercivity of the operator. It's worth mentioning that the convergence of the provided scheme is independent of the temporal regularity of the exact solution. Finally, numerical results are proposed to verify the correctness of the theoretical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset