Relative Loss Bounds for On-line Density Estimation with the Exponential Family of Distributions

01/23/2013
by   Katy S. Azoury, et al.
0

We consider on-line density estimation with a parameterized density from the exponential family. The on-line algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss which is the negative log-likelihood of the example w.r.t. the past parameter of the algorithm. An off-line algorithm can choose the best parameter based on all the examples. We prove bounds on the additional total loss of the on-line algorithm over the total loss of the off-line algorithm. These relative loss bounds hold for an arbitrary sequence of examples. The goal is to design algorithms with the best possible relative loss bounds. We use a certain divergence to derive and analyze the algorithms. This divergence is a relative entropy between two exponential distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro