Removing the mini-batching error in Bayesian inference using Adaptive Langevin dynamics

05/21/2021
by   Inass Sekkat, et al.
0

The computational cost of usual Monte Carlo methods for sampling a posteriori laws in Bayesian inference scales linearly with the number of data points. One option to reduce it to a fraction of this cost is to resort to mini-batching in conjunction with unadjusted discretizations of Langevin dynamics, in which case only a random fraction of the data is used to estimate the gradient. However, this leads to an additional noise in the dynamics and hence a bias on the invariant measure which is sampled by the Markov chain. We advocate using the so-called Adaptive Langevin dynamics, which is a modification of standard inertial Langevin dynamics with a dynamical friction which automatically corrects for the increased noise arising from mini-batching. We investigate the practical relevance of the assumptions underpinning Adaptive Langevin (constant covariance for the estimation of the gradient), which are not satisfied in typical models of Bayesian inference; and show how to extend the approach to more general situations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset