Representing Knowledge as Predictions (and State as Knowledge)

12/12/2021
by   Mark Ring, et al.
0

This paper shows how a single mechanism allows knowledge to be constructed layer by layer directly from an agent's raw sensorimotor stream. This mechanism, the General Value Function (GVF) or "forecast," captures high-level, abstract knowledge as a set of predictions about existing features and knowledge, based exclusively on the agent's low-level senses and actions. Thus, forecasts provide a representation for organizing raw sensorimotor data into useful abstractions over an unlimited number of layers–a long-sought goal of AI and cognitive science. The heart of this paper is a detailed thought experiment providing a concrete, step-by-step formal illustration of how an artificial agent can build true, useful, abstract knowledge from its raw sensorimotor experience alone. The knowledge is represented as a set of layered predictions (forecasts) about the agent's observed consequences of its actions. This illustration shows twelve separate layers: the lowest consisting of raw pixels, touch and force sensors, and a small number of actions; the higher layers increasing in abstraction, eventually resulting in rich knowledge about the agent's world, corresponding roughly to doorways, walls, rooms, and floor plans. I then argue that this general mechanism may allow the representation of a broad spectrum of everyday human knowledge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro