Restore from Restored: Single Image Denoising with Pseudo Clean Image

03/09/2020
by   Seunghwan Lee, et al.
0

Under certain statistical assumptions of noise (e.g., zero-mean noise), recent self-supervised approaches for denoising have been introduced to learn network parameters without ground-truth clean images, and these methods can restore an image by exploiting information available from the given input (i.e., internal statistics) at test time. However, self-supervised methods are not yet properly combined with conventional supervised denoising methods which train the denoising networks with a large number of external training images. Thus, we propose a new denoising approach that can greatly outperform the state-of-the-art supervised denoising methods by adapting (fine-tuning) their network parameters to the given specific input through self-supervision without changing the fully original network architectures. We demonstrate that the proposed method can be easily employed with state-of-the-art denoising networks without additional parameters, and achieve state-of-the-art performance on numerous denoising benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro