Revisiting Metric Learning for Few-Shot Image Classification

07/06/2019
by   Xiaomeng Li, et al.
2

The goal of few-shot learning is to recognize new visual concepts with just a few amount of labeled samples in each class. Recent effective metric-based few-shot approaches employ neural networks to learn a feature similarity comparison between query and support examples. However, the importance of feature embedding, i.e., exploring the relationship among training samples, is neglected. In this work, we present a simple yet powerful baseline for few-shot classification by emphasizing the importance of feature embedding. Specifically, we revisit the classical triplet network from deep metric learning, and extend it into a deep K-tuplet network for few-shot learning, utilizing the relationship among the input samples to learn a general representation learning via episode-training. Once trained, our network is able to extract discriminative features for unseen novel categories and can be seamlessly incorporated with a non-linear distance metric function to facilitate the few-shot classification. Our result on the miniImageNet benchmark outperforms other metric-based few-shot classification methods. More importantly, when evaluated on completely different datasets (Caltech-101, CUB-200, Stanford Dogs and Cars) using the model trained with miniImageNet, our method significantly outperforms prior methods, demonstrating its superior capability to generalize to unseen classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset