Rewarding Smatch: Transition-Based AMR Parsing with Reinforcement Learning

05/31/2019
by   Tahira Naseem, et al.
0

Our work involves enriching the Stack-LSTM transition-based AMR parser (Ballesteros and Al-Onaizan, 2017) by augmenting training with Policy Learning and rewarding the Smatch score of sampled graphs. In addition, we also combined several AMR-to-text alignments with an attention mechanism and we supplemented the parser with pre-processed concept identification, named entities and contextualized embeddings. We achieve a highly competitive performance that is comparable to the best published results. We show an in-depth study ablating each of the new components of the parser

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro