Rewriting Meaningful Sentences via Conditional BERT Sampling and an application on fooling text classifiers

10/22/2020
by   Lei Xu, et al.
0

Most adversarial attack methods that are designed to deceive a text classifier change the text classifier's prediction by modifying a few words or characters. Few try to attack classifiers by rewriting a whole sentence, due to the difficulties inherent in sentence-level rephrasing as well as the problem of setting the criteria for legitimate rewriting. In this paper, we explore the problem of creating adversarial examples with sentence-level rewriting. We design a new sampling method, named ParaphraseSampler, to efficiently rewrite the original sentence in multiple ways. Then we propose a new criteria for modification, called a sentence-level threaten model. This criteria allows for both word- and sentence-level changes, and can be adjusted independently in two dimensions: semantic similarity and grammatical quality. Experimental results show that many of these rewritten sentences are misclassified by the classifier. On all 6 datasets, our ParaphraseSampler achieves a better attack success rate than our baseline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro