Rigorous modelling of nonlocal interactions determines a macroscale advection-diffusion PDE
A slowly-varying or thin-layer multiscale assumption empowers macroscale understanding of many physical scenarios from dispersion in pipes and rivers, including beams, shells, and the modulation of nonlinear waves, to homogenisation of micro-structures. Here we begin a new exploration of the scenario where the given physics has non-local microscale interactions. We rigorously analyse the dynamics of a basic example of shear dispersion. Near each cross-section, the dynamics is expressed in the local moments of the microscale non-local effects. Centre manifold theory then supports the local modelling of the system's dynamics with coupling to neighbouring cross-sections as a non-autonomous forcing. The union over all cross-sections then provides powerful new support for the existence and emergence of a macroscale model advection-diffusion PDE global in the large, finite-sized, domain. The approach quantifies the accuracy of macroscale advection-diffusion approximations, and has the potential to open previously intractable multiscale issues to new insights.
READ FULL TEXT