Robust 2D Assembly Sequencing via Geometric Planning with Learned Scores

09/20/2020
by   Tzvika Geft, et al.
0

To compute robust 2D assembly plans, we present an approach that combines geometric planning with a deep neural network. We train the network using the Box2D physics simulator with added stochastic noise to yield robustness scores–the success probabilities of planned assembly motions. As running a simulation for every assembly motion is impractical, we train a convolutional neural network to map assembly operations, given as an image pair of the subassemblies before and after they are mated, to a robustness score. The neural network prediction is used within a planner to quickly prune out motions that are not robust. We demonstrate this approach on two-handed planar assemblies, where the motions are one-step translations. Results suggest that the neural network can learn robustness to plan robust sequences an order of magnitude faster than physics simulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset