Robust one-bit compressed sensing with non-Gaussian measurements

05/23/2018
by   Sjoerd Dirksen, et al.
0

We study memoryless one-bit compressed sensing with non-Gaussian measurement matrices. We show that by quantizing at uniformly distributed thresholds, it is possible to accurately reconstruct low-complexity signals from a small number of one-bit quantized measurements, even if the measurement vectors are drawn from a heavy-tailed distribution. Our reconstruction results are uniform in nature and robust in the presence of pre-quantization noise on the analog measurements as well as adversarial bit corruptions in the quantization process. If the measurement matrix is subgaussian, then accurate recovery can be achieved via a convex program. Our reconstruction theorems rely on a new random hyperplane tessellation result, which is of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro