Robust random walk-like Metropolis-Hastings algorithms for concentrating posteriors
Motivated by Bayesian inference with highly informative data we analyze the performance of random walk-like Metropolis-Hastings algorithms for approximate sampling of increasingly concentrating target distributions. We focus on Gaussian proposals which use a Hessian-based approximation of the target covariance. By means of pushforward transition kernels we show that for Gaussian target measures the spectral gap of the corresponding Metropolis-Hastings algorithm is independent of the concentration of the posterior, i.e., the noise level in the observational data that is used for Bayesian inference. Moreover, by exploiting the convergence of the concentrating posteriors to their Laplace approximation we extend the analysis to non-Gaussian target measures which either concentrate around a single point or along a linear manifold. In particular, in that setting we show that the average acceptance rate as well as the expected squared jump distance of suitable Metropolis-Hastings Markov chains do not deteriorate as the target concentrates.
READ FULL TEXT