Robust recovery of multiple subspaces by geometric l_p minimization

04/19/2011
by   Gilad Lerman, et al.
0

We assume i.i.d. data sampled from a mixture distribution with K components along fixed d-dimensional linear subspaces and an additional outlier component. For p>0, we study the simultaneous recovery of the K fixed subspaces by minimizing the l_p-averaged distances of the sampled data points from any K subspaces. Under some conditions, we show that if 0<p≤1, then all underlying subspaces can be precisely recovered by l_p minimization with overwhelming probability. On the other hand, if K>1 and p>1, then the underlying subspaces cannot be recovered or even nearly recovered by l_p minimization. The results of this paper partially explain the successes and failures of the basic approach of l_p energy minimization for modeling data by multiple subspaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro