Robust simulation design for generalized linear models in conditions of heteroscedasticity or correlation

12/20/2022
by   Andrew Gill, et al.
0

A meta-model of the input-output data of a computationally expensive simulation is often employed for prediction, optimization, or sensitivity analysis purposes. Fitting is enabled by a designed experiment, and for computationally expensive simulations, the design efficiency is of importance. Heteroscedasticity in simulation output is common, and it is potentially beneficial to induce dependence through the reuse of pseudo-random number streams to reduce the variance of the meta-model parameter estimators. In this paper, we develop a computational approach to robust design for computer experiments without the need to assume independence or identical distribution of errors. Through explicit inclusion of the variance or correlation structures into the meta-model distribution, either maximum likelihood estimation or generalized estimating equations can be employed to obtain an appropriate Fisher information matrix. Robust designs can then be computationally sought which maximize some relevant summary measure of this matrix, averaged across a prior distribution of any unknown parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset