Roundtrip Spanners with (2k-1) Stretch

11/27/2019
by   Ruoxu Cen, et al.
0

A roundtrip spanner of a directed graph G is a subgraph of G preserving roundtrip distances approximately for all pairs of vertices. Despite extensive research, there is still a small stretch gap between roundtrip spanners in directed graphs and undirected spanners. For a directed graph with real edge weights in [1,W], we first propose a new deterministic algorithm that constructs a roundtrip spanner with (2k-1) stretch and O(k n^1+1/klog (nW)) edges for every integer k> 1, then remove the dependence of size on W to give a roundtrip spanner with (2k-1+o(1)) stretch and O(k n^1+1/klog n) edges. While keeping the edge size small, our result improves the previous 2k+ϵ stretch roundtrip spanners in directed graphs [Roditty, Thorup, Zwick'02; Zhu, Lam'18], and almost match the undirected (2k-1)-spanner with O(k n^1+1/k) edges [Althöfer et al. '93] which is optimal under Erdös conjecture.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro