S2AMP: A High-Coverage Dataset of Scholarly Mentorship Inferred from Publications

04/22/2022
by   Shaurya Rohatgi, et al.
0

Mentorship is a critical component of academia, but is not as visible as publications, citations, grants, and awards. Despite the importance of studying the quality and impact of mentorship, there are few large representative mentorship datasets available. We contribute two datasets to the study of mentorship. The first has over 300,000 ground truth academic mentor-mentee pairs obtained from multiple diverse, manually-curated sources, and linked to the Semantic Scholar (S2) knowledge graph. We use this dataset to train an accurate classifier for predicting mentorship relations from bibliographic features, achieving a held-out area under the ROC curve of 0.96. Our second dataset is formed by applying the classifier to the complete co-authorship graph of S2. The result is an inferred graph with 137 million weighted mentorship edges among 24 million nodes. We release this first-of-its-kind dataset to the community to help accelerate the study of scholarly mentorship: <https://github.com/allenai/S2AMP-data>

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset