Sample-specific repetitive learning for photo aesthetic assessment and highlight region extraction

09/18/2019
by   Ying Dai, et al.
5

Aesthetic assessment is subjective, and the distribution of the aesthetic levels is imbalanced. In order to realize the auto-assessment of photo aesthetics, we focus on retraining the CNN-based aesthetic assessment model by dropping out the unavailable samples in the middle levels from the training data set repetitively to overcome the effect of imbalanced aesthetic data on classification. Further, the method of extracting aesthetics highlight region of the photo image by using the two repetitively trained models is presented. Therefore, the correlation of the extracted region with the aesthetic levels is analyzed to illustrate what aesthetics features influence the aesthetic quality of the photo. Moreover, the testing data set is from the different data source called 500px. Experimental results show that the proposed method is effective.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset