Sampling-Based Accuracy Testing of Posterior Estimators for General Inference

02/06/2023
by   Pablo Lemos, et al.
0

Parameter inference, i.e. inferring the posterior distribution of the parameters of a statistical model given some data, is a central problem to many scientific disciplines. Posterior inference with generative models is an alternative to methods such as Markov Chain Monte Carlo, both for likelihood-based and simulation-based inference. However, assessing the accuracy of posteriors encoded in generative models is not straightforward. In this paper, we introduce `distance to random point' (DRP) coverage testing as a method to estimate coverage probabilities of generative posterior estimators. Our method differs from previously-existing coverage-based methods, which require posterior evaluations. We prove that our approach is necessary and sufficient to show that a posterior estimator is optimal. We demonstrate the method on a variety of synthetic examples, and show that DRP can be used to test the results of posterior inference analyses in high-dimensional spaces. We also show that our method can detect non-optimal inferences in cases where existing methods fail.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro