Sampling Method for Fast Training of Support Vector Data Description

06/16/2016
by   Arin Chaudhuri, et al.
0

Support Vector Data Description (SVDD) is a popular outlier detection technique which constructs a flexible description of the input data. SVDD computation time is high for large training datasets which limits its use in big-data process-monitoring applications. We propose a new iterative sampling-based method for SVDD training. The method incrementally learns the training data description at each iteration by computing SVDD on an independent random sample selected with replacement from the training data set. The experimental results indicate that the proposed method is extremely fast and provides a good data description .

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset