Scalable Edge Partitioning

08/20/2018
by   Sebastian Schlag, et al.
0

Edge-centric distributed computations have appeared as a recent technique to improve the shortcomings of think-like-a-vertex algorithms on large scale-free networks. In order to increase parallelism on this model, edge partitioning - partitioning edges into roughly equally sized blocks - has emerged as an alternative to traditional (node-based) graph partitioning. In this work, we give a distributed memory parallel algorithm to compute high-quality edge partitions in a scalable way. Our algorithm scales to networks with billions of edges, and runs efficiently on thousands of PEs. Our technique is based on a fast parallelization of split graph construction and a use of advanced node partitioning algorithms. Our extensive experiments show that our algorithm has high quality on large real-world networks and large hyperbolic random graphs, which have a power law degree distribution and are therefore specifically targeted by edge partitioning

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro