Scalable Quantum Convolutional Neural Networks

09/26/2022
by   Hankyul Baek, et al.
0

With the beginning of the noisy intermediate-scale quantum (NISQ) era, quantum neural network (QNN) has recently emerged as a solution for the problems that classical neural networks cannot solve. Moreover, QCNN is attracting attention as the next generation of QNN because it can process high-dimensional vector input. However, due to the nature of quantum computing, it is difficult for the classical QCNN to extract a sufficient number of features. Motivated by this, we propose a new version of QCNN, named scalable quantum convolutional neural network (sQCNN). In addition, using the fidelity of QC, we propose an sQCNN training algorithm named reverse fidelity training (RF-Train) that maximizes the performance of sQCNN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro