Scheduling the NASA Deep Space Network with Deep Reinforcement Learning

by   Edwin Goh, et al.

With three complexes spread evenly across the Earth, NASA's Deep Space Network (DSN) is the primary means of communications as well as a significant scientific instrument for dozens of active missions around the world. A rapidly rising number of spacecraft and increasingly complex scientific instruments with higher bandwidth requirements have resulted in demand that exceeds the network's capacity across its 12 antennae. The existing DSN scheduling process operates on a rolling weekly basis and is time-consuming; for a given week, generation of the final baseline schedule of spacecraft tracking passes takes roughly 5 months from the initial requirements submission deadline, with several weeks of peer-to-peer negotiations in between. This paper proposes a deep reinforcement learning (RL) approach to generate candidate DSN schedules from mission requests and spacecraft ephemeris data with demonstrated capability to address real-world operational constraints. A deep RL agent is developed that takes mission requests for a given week as input, and interacts with a DSN scheduling environment to allocate tracks such that its reward signal is maximized. A comparison is made between an agent trained using Proximal Policy Optimization and its random, untrained counterpart. The results represent a proof-of-concept that, given a well-shaped reward signal, a deep RL agent can learn the complex heuristics used by experts to schedule the DSN. A trained agent can potentially be used to generate candidate schedules to bootstrap the scheduling process and thus reduce the turnaround cycle for DSN scheduling.


page 1

page 6

page 8


Mission schedule of agile satellites based on Proximal Policy Optimization Algorithm

Mission schedule of satellites is an important part of space operation n...

Deep Reinforcement Agent for Scheduling in HPC

Cluster scheduler is crucial in high-performance computing (HPC). It det...

Effective Scheduling Function Design in SDN through Deep Reinforcement Learning

Recent research on Software-Defined Networking (SDN) strongly promotes t...

Reinforcement Learning for UAV control with Policy and Reward Shaping

In recent years, unmanned aerial vehicle (UAV) related technology has ex...

Renaissance Robot: Optimal Transport Policy Fusion for Learning Diverse Skills

Deep reinforcement learning (RL) is a promising approach to solving comp...

Distributed Energy Trading and Scheduling among Microgrids via Multiagent Reinforcement Learning

The development of renewable energy generation empowers microgrids to ge...

Dynamic Measurement Scheduling for Adverse Event Forecasting using Deep RL

Current clinical practice to monitor patients' health follows either reg...

Please sign up or login with your details

Forgot password? Click here to reset