SegDiff: Image Segmentation with Diffusion Probabilistic Models

12/01/2021
by   Tomer Amit, et al.
1

Diffusion Probabilistic Methods are employed for state-of-the-art image generation. In this work, we present a method for extending such models for performing image segmentation. The method learns end-to-end, without relying on a pre-trained backbone. The information in the input image and in the current estimation of the segmentation map is merged by summing the output of two encoders. Additional encoding layers and a decoder are then used to iteratively refine the segmentation map using a diffusion model. Since the diffusion model is probabilistic, it is applied multiple times and the results are merged into a final segmentation map. The new method obtains state-of-the-art results on the Cityscapes validation set, the Vaihingen building segmentation benchmark, and the MoNuSeg dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset