Self-similarity in the Kepler-Heisenberg problem

12/28/2019
by   Victor Dods, et al.
0

The Kepler-Heisenberg problem is that of determining the motion of a planet around a sun in the Heisenberg group, thought of as a three-dimensional sub-Riemannian manifold. The sub-Riemannian Hamiltonian provides the kinetic energy, and the gravitational potential is given by the fundamental solution to the sub-Laplacian. The dynamics are at least partially integrable, possessing two first integrals as well as a dilational momentum which is conserved by orbits with zero energy. The system is known to admit closed orbits of any rational rotation number, which all lie within the fundamental zero-energy integrable subsystem. Here we demonstrate that, under mild conditions, zero-energy orbits are self-similar. Consequently we find that these zero-energy orbits stratify into three families: future collision, past collision, and quasi-periodicity, with all collisions occurring in finite time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset