Self-Tuned Deep Super Resolution

04/22/2015
by   Zhangyang Wang, et al.
0

Deep learning has been successfully applied to image super resolution (SR). In this paper, we propose a deep joint super resolution (DJSR) model to exploit both external and self similarities for SR. A Stacked Denoising Convolutional Auto Encoder (SDCAE) is first pre-trained on external examples with proper data augmentations. It is then fine-tuned with multi-scale self examples from each input, where the reliability of self examples is explicitly taken into account. We also enhance the model performance by sub-model training and selection. The DJSR model is extensively evaluated and compared with state-of-the-arts, and show noticeable performance improvements both quantitatively and perceptually on a wide range of images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro