Semi-supervised Domain Adaptation with Inter and Intra-domain Mixing for Semantic Segmentation
Despite recent advances in semantic segmentation, an inevitable challenge is the performance degradation caused by the domain shift in real application. Current dominant approach to solve this problem is unsupervised domain adaptation (UDA). However, the absence of labeled target data in UDA is overly restrictive and limits performance. To overcome this limitation, a more practical scenario called semi-supervised domain adaptation (SSDA) has been proposed. Existing SSDA methods are derived from the UDA paradigm and primarily focus on leveraging the unlabeled target data and source data. In this paper, we highlight the significance of exploiting the intra-domain information between the limited labeled target data and unlabeled target data, as it greatly benefits domain adaptation. Instead of solely using the scarce labeled data for supervision, we propose a novel SSDA framework that incorporates both inter-domain mixing and intra-domain mixing, where inter-domain mixing mitigates the source-target domain gap and intra-domain mixing enriches the available target domain information. By simultaneously learning from inter-domain mixing and intra-domain mixing, the network can capture more domain-invariant features and promote its performance on the target domain. We also explore different domain mixing operations to better exploit the target domain information. Comprehensive experiments conducted on the GTA5toCityscapes and SYNTHIA2Cityscapes benchmarks demonstrate the effectiveness of our method, surpassing previous methods by a large margin.
READ FULL TEXT