Semi-supervised multi-organ segmentation via multi-planar co-training

04/07/2018
by   Yuyin Zhou, et al.
0

Multi-organ segmentation is a critical problem in medical image analysis due to its great value for computer-aided diagnosis, computer-aided surgery, and radiation therapy. Although fully-supervised segmentation methods can achieve good performance, they usually require a large amount of 3D data, such as CT scans, with voxel-wised annotations which are usually difficult, expensive, and slow to obtain. By contrast, large unannotated datasets of CT images are available. Inspired by the well-known semi-supervised learning framework co-training, we propose multi-planar co-training (MPCT), to generate more reliable pseudo-labels by enforcing consistency among multiple planes, i.e., saggital, coronal, and axial planes, of 3D unlabeled medical data, which play a vital role in our framework. Empirical results show that generating pseudo-labels by the multi-planar fusion rather than a single plane leads to a significant performance gain. We evaluate our approach on a new collected dataset and show that MPCT boosts the performance of a typical segmentation model, fully convolutional networks, by a large margin, when only a small set of labeled 3D data is available, i.e., 77.49

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro