Semidefinite Relaxations of Products of Nonnegative Forms on the Sphere

02/25/2021
by   Chenyang Yuan, et al.
0

We study the problem of maximizing the geometric mean of d low-degree non-negative forms on the real or complex sphere in n variables. We show that this highly non-convex problem is NP-hard even when the forms are quadratic and is equivalent to optimizing a homogeneous polynomial of degree O(d) on the sphere. The standard Sum-of-Squares based convex relaxation for this polynomial optimization problem requires solving a semidefinite program (SDP) of size n^O(d), with multiplicative approximation guarantees of Ω(1/n). We exploit the compact representation of this polynomial to introduce a SDP relaxation of size polynomial in n and d, and prove that it achieves a constant factor multiplicative approximation when maximizing the geometric mean of non-negative quadratic forms. We also show that this analysis is asymptotically tight, with a sequence of instances where the gap between the relaxation and true optimum approaches this constant factor as d →∞. Next we propose a series of intermediate relaxations of increasing complexity that interpolate to the full Sum-of-Squares relaxation, as well as a rounding algorithm that finds an approximate solution from the solution of any intermediate relaxation. Finally we show that this approach can be generalized for relaxations of products of non-negative forms of any degree.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro