SemiFL: Communication Efficient Semi-Supervised Federated Learning with Unlabeled Clients

06/02/2021
by   Enmao Diao, et al.
0

Federated Learning allows training machine learning models by using the computation and private data resources of a large number of distributed clients such as smartphones and IoT devices. Most existing works on Federated Learning (FL) assume the clients have ground-truth labels. However, in many practical scenarios, clients may be unable to label task-specific data, e.g., due to lack of expertise. In this work, we consider a server that hosts a labeled dataset, and wishes to leverage clients with unlabeled data for supervised learning. We propose a new Federated Learning framework referred to as SemiFL in order to address the problem of Semi-Supervised Federated Learning (SSFL). In SemiFL, clients have completely unlabeled data, while the server has a small amount of labeled data. SemiFL is communication efficient since it separates the training of server-side supervised data and client-side unsupervised data. We demonstrate various efficient strategies of SemiFL that enhance learning performance. Extensive empirical evaluations demonstrate that our communication efficient method can significantly improve the performance of a labeled server with unlabeled clients. Moreover, we demonstrate that SemiFL can outperform many existing FL results trained with fully supervised data, and perform competitively with the state-of-the-art centralized Semi-Supervised Learning (SSL) methods. For instance, in standard communication efficient scenarios, our method can perform 93 samples at the server. Such accuracy is only 2 from 50000 fully labeled data, and it improves about 30 methods in the communication efficient setting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset