Sex-Classification from Cell-Phones Periocular Iris Images

12/31/2018
by   Juan Tapia, et al.
2

Selfie soft biometrics has great potential for various applications ranging from marketing, security and online banking. However, it faces many challenges since there is limited control in data acquisition conditions. This chapter presents a Super-Resolution-Convolutional Neural Networks (SRCNNs) approach that increases the resolution of low quality periocular iris images cropped from selfie images of subject's faces. This work shows that increasing image resolution (2x and 3x) can improve the sex-classification rate when using a Random Forest classifier. The best sex-classification rate was 90.15 right and 87.15 from 150x150 to 450x450 pixels. These results compare well with the state of the art and show that when improving image resolution with the SRCNN the sex-classification rate increases. Additionally, a novel selfie database captured from 150 subjects with an iPhone X was created (available upon request).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset