Sharpening randomization-based causal inference for 2^2 factorial designs with binary outcomes

11/13/2017
by   Jiannan Lu, et al.
0

In medical research, a scenario often entertained is randomized controlled 2^2 factorial design with a binary outcome. By utilizing the concept of potential outcomes, Dasgupta et al. (2015) proposed a randomization-based causal inference framework, allowing flexible and simultaneous estimations and inferences of the factorial effects. However, a fundamental challenge that Dasgupta et al. (2015)'s proposed methodology faces is that the sampling variance of the randomization-based factorial effect estimator is unidentifiable, rendering the corresponding classic "Neymanian" variance estimator suffering from over-estimation. To address this issue, for randomized controlled 2^2 factorial designs with binary outcomes, we derive the sharp lower bound of the sampling variance of the factorial effect estimator, which leads to a new variance estimator that sharpens the finite-population Neymanian causal inference. We demonstrate the advantages of the new variance estimator through a series of simulation studies, and apply our newly proposed methodology to two real-life datasets from randomized clinical trials, where we gain new insights.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro