SimCSE: Simple Contrastive Learning of Sentence Embeddings
This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We hypothesize that dropout acts as minimal data augmentation and removing it leads to a representation collapse. Then, we draw inspiration from the recent success of learning sentence embeddings from natural language inference (NLI) datasets and incorporate annotated pairs from NLI datasets into contrastive learning by using "entailment" pairs as positives and "contradiction" pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT-base achieve an average of 74.5 correlation respectively, a 7.9 and 4.6 points improvement compared to previous best results. We also show that contrastive learning theoretically regularizes pre-trained embeddings' anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available.
READ FULL TEXT