Simultaneous Bayesian inference of motion velocity fields and probabilistic models in successive video-frames described by spatio-temporal MRFs

04/21/2010
by   Yuya Inagaki, et al.
0

We numerically investigate a mean-field Bayesian approach with the assistance of the Markov chain Monte Carlo method to estimate motion velocity fields and probabilistic models simultaneously in consecutive digital images described by spatio-temporal Markov random fields. Preliminary to construction of our procedure, we find that mean-field variables in the iteration diverge due to improper normalization factor of regularization terms appearing in the posterior. To avoid this difficulty, we rescale the regularization term by introducing a scaling factor and optimizing it by means of minimization of the mean-square error. We confirm that the optimal scaling factor stabilizes the mean-field iterative process of the motion velocity estimation. We next attempt to estimate the optimal values of hyper-parameters including the regularization term, which define our probabilistic model macroscopically, by using the Boltzmann-machine type learning algorithm based on gradient descent of marginal likelihood (type-II likelihood) with respect to the hyper-parameters. In our framework, one can estimate both the probabilistic model (hyper-parameters) and motion velocity fields simultaneously. We find that our motion estimation is much better than the result obtained by Zhang and Hanouer (1995) in which the hyper-parameters are set to some ad-hoc values without any theoretical justification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro